Tetrahedron Letters, Vol.26, No.17, pp 2059-2062, 1985 0040-4039/85 \$3.00 + .00 Printed in Great Britain ©1985 Pergamon Press Ltd.

SYNTHESIS OF A NEW CLASS OF ACYCLIC 2',5'- AND 3',5'-OLIGONUCLEOTIDE ANALOGS BASED ON 9-[1,5-DIHYDROXY-4(S)-HYDROXYMETHYL-3-OXAPENT-2(R)-YL]-ADENINE

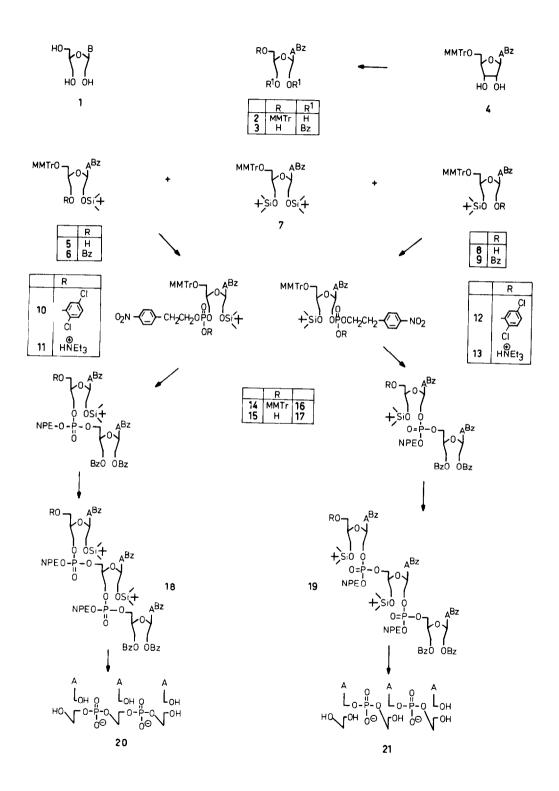
SERGEY N. MIKHAILOV[#] AND WOLFGANG PFLEIDERER^{*}

[#]Institute of Molecular Biology of the USSR Academy of Sciences, Moscow B-334 / USSR, and *Department of Chemistry, University of Konstanz, P.O. Box 5560, D-7750 Konstanz/W. Germany

The acyclic analogs of 2',5'- and 3',5'-oligoadenylates possessing all functional groups of the natural compounds were prepared on the basis of "oxydized-reduced" adenosine.

The recent discovery of a new low-molecular-weight regulator (2',5')pppApApA [1,2] greatly stimulated the interest in short-chained oligoribonucleotides. Many oligonucleotides on the basis of natural nucleosides and their analogs were prepared [3,4].

In a continuation of these investigations we present the synthetic strategy to a new class of acyclic oligonucleotide analogs containing all of the functionalities of the natural compounds on the basis of 9-[1,5-dihydroxy-4(S)hydroxymethyl-3-oxapent-2(R)-yl]-adenine. The so-called "oxydized-reduced" nucleosides (<u>1</u>) are known for more than two decades also as their 5'-phosphates [5-7]. For the preparation of the oligonucleotides on this basis different blocking of the various primary hydroxyl groups has to be achieved. The 5'-hydroxyl group has to be blocked before subsequent oxidation and reduction in order to preserve chirality at C-4'.


The developed strategy for the synthesis of such oligonucleotides is demonstrated in the following synthesis of the acyclo-2',5'- and 3',5'-oligoadenylates. Readily available N^6 -benzoyl-5'-O-monomethoxytrityl-adenosine ($\frac{4}{2}$) [8] was used as a starting compound. After oxidation with NaIO₄ in a water-dioxane mixture followed by reduction with NaBH₄ partially blocked $\frac{2}{2}$ was obtained in high yield.

2059

The reaction of compound $\frac{2}{2}$ with 1.2 equiv. of t-butyldimethylsilylchloride in pyridine led to a mixture of the corresponding bis- $\frac{7}{2}$ and mono-O-butyldimethylsilyl derivatives $\frac{5}{2}$ and $\frac{8}{2}$, which was separated by means of silica gel chromatography. The structure of these key-intermediates for oligonucleotide synthesis was proven by PMR spectroscopic decoupling experiments. In order to simplify the PMR-spectra and to get further evidence for the structural assignment also the O-benzoyl derivatives $\frac{6}{2}$ and $\frac{9}{2}$ were prepared and studied. The terminal building block $\frac{3}{2}$ was obtained in overall good yield by subsequent benzoylation (BzCN-dioxane-NEt₃) and detritylation (1 % F₃CCOOH in CHCl₃) of the acyclic nucleoside $\frac{2}{2}$.

The preparation of the acyclic 2',5'- and 3',5'-oligonucleotide trimers was achieved by a general method recently developed [9,10]. Phosphorylation of the nucleosides $\frac{5}{2}$ and $\frac{8}{2}$ respectively with 2,5-dichlorophenylphosphoro ditriazolide and subsequent addition of p-nitrophenylethanol yielded the blocked nucleotides $\frac{10}{2}$ and $\frac{12}{2}$ in 80-85 % yield. These compounds were converted into the corresponding phosphodiesters $\frac{11}{2}$ and $\frac{13}{2}$ (4-nitrobenzaldoxime NEt₃-waterdioxane 1:1:1, 40-50 min at 20^oC) and then condensed in the presence of triisopropylbenzenesulfonyl chloride (TPSC1) and N-methylimidazole [11,12] in dichloroethane with the terminal nucleoside $\frac{3}{2}$ to give the dimers [13] $\frac{14}{2}$ and $\frac{16}{2}$ in 80-90 % overall yields. After detritylation (1 % F₃CCOOH in CHCl₃, 10 min at 20^oC) compound $\frac{15}{2}$ an $\frac{17}{2}$ respectively were used as nucleoside components in the analogous synthesis of the trimers $\frac{18}{2}$ and $\frac{19}{2}$ under the same conditions.

Both oligomers $\underline{18}$ and $\underline{19}$ were deblocked using first 0.5 M DBU in pyridine for 16 h at 20° C, then semisaturated ammonia in methanol for 24 h at 20° C, followed by 1 M Bu₄NF in THF for 24 h at 20° C and finally 80 % acetic acid for 6 h at 20° C. The resulting products were purified on a DEAE-cellulose column using a linear gradient of 0.0 \rightarrow 0.2 M ammonium bicarbonate buffer to give $\underline{20}$ and $\underline{21}$ in 90-95 % yield. The purity of all products has been checked by chromatographical means and the various structures have been proven by UV, CD and NMR spectra as well as elementary analyses.

2			

Physical Data of Acyclic 2',5'- and 3',5'-Adenosine Trimers

Com-	NMR - Spectra in D ₂ 0				UV - Spectra in MeOH / pH 7			
pound	8-H	and	2-H	1'-Н (J)			λ _{max} (nm)	lg ε
18 19 20		8.38s 8.16s		6.01t (5.6)	5.97t (5.5)	5.94t (5.2)	230 [260] 278 230 [260] 278 259	4.91 [4.72] 4.88 4.91 [4.71] 4.87 4.60 (pH 7)
21_		8.26s 8.10s	8.20s(2H)	6.00t (5.6)	5.93t (5.5)	5.92t (5.2)	259	4.60 (pH 7)

REFERENCES

- 1 I.M. Kerr and R.E. Brown, Proc.Natl.Acad.Sci USA 75, 256 (1978).
- 2 P.F. Torrence, Molec. Aspects Med. 5, 129 (1982).
- 3 D.A. Eppstein, Y.V. Marsh, B.B. Schryver, M.A. Larsen, J.W. Barnett, J.P.H. Verheyden and E.J. Prisbe, J.Biol.Chem. 257, 13390 (1982).
- 4 Y. Devash, A. Gera, D.H. Willis, M. Reichman, W. Pfleiderer, R. Charubala, I. Sela and R.J. Suhadolnik, J.Biol.Chem. 259, 3482 (1984).
- 5 J.X. Khym and W.E. Cohn, J.Am.Chem.Soc. 82, 6380 (1960).
- 6 L.M. Lerner, Carbohydr. Res. 13, 465 (1970).
- 7 A.M. Kritzyn, S.N. Mikhailov, A. Yu. Misharin, N.Sh. Padyukova and V.L. Florentiev, Bioorgan.Khim. (USSR) 2, 1338 (1976).
- B. Flockerzi, G. Silber, R. Charubala, W. Schlosser, R.S. Varma, F. Creegan and
 W. Pfleiderer, Liebigs Ann.Chem. 1981, 1568.
- 9 E. Uhlmann and W. Pfleiderer, Helv.Chim. Acta 64, 1688 (1981).
- 10 R. Charubala, E. Uhlmann and W. Pfleiderer, Liebigs Ann.Chem. 1981, 2392.
- 11 V.A. Efimov, S.V. Reverdatto and O.G. Chakhmakhcheva, <u>Bioorgan.Khim. (USSR)</u> 8, 231 (1982).
- 12 A.L. Kayushin, Yu.A. Berlin and M.N. Kolosov, <u>Bioorgan.Khim. (USSR)</u> 8, 660 (1982).
- 13 Several analogous dimers have been prepared earlier by condensation of partially blocked compounds of type 2 with fully acetylated 5'-nucleotides followed by deprotection and separation of isomers: V.L. Florentiev, Doktorskaya dissiktaciya, Moscow, 1981.

The method is limited to the preparation of dimers. No details of chemical synthesis have been published.

(Received in Germany 26 October 1984)